Math Connections to Earth and Space Science

Glen Schuster

Endeav

Math Connections to Earth and Space Science

Mathematical Problems in Earth and Space Science

Dr. Sten Odenwald NASA

http://spacemath.gsfc.nasa.gov

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

- + Visit the NASA Portal
- + Hinode Education
- + IMAGE Education

Search:

100 a

Space Math @ NASA

Search by

- + Math Topic
- + General Science
- +Earth
- +Moon
- +Sun
- +Planets
- +Stars
- +Universe
- +Space Travel

This web page contains problem sets in PDF format. The goal of these problems is to teach students about astronomy and space science by using mathematics and real-world problems. The current batch is for January-April, 2010. As new NASA press releases are posted, a small number of additional math problems will appear. For email announcements about Space Math, join the E-Teachers Listserve.

http://spacemath.gsfc.nasa.gov

National Aeronautics and Space Administration

Years

Goal:

Convert your annual electric bill into an equivalent number of tons of CO2

Watt - Unit of electrical energy use

1 Joule of energy 1 watt = -----1 second

kiloWatt - 1,000 watts

'kilo' is the prefix for 1,000

Examples:


```
kiloWatt - 1,000 watts
```

'kilo' is the prefix for 1,000

Examples:

- 1 kilometer = 1,000 meters
- 1 kilogram = 1,000 grams
 - 1 kiloton = 1,000 tons

kiloWatt-Hour – a unit of electric energy use.

There are 2 things involved here.

1 – The unit of a kilowatt
2 – The idea that energy use is the product of a rate x time:

Example:

10, 100-watt bulbs left on for 2 hours

- Energy = Power x time
 - = 1 kW x 2 hours
 - = 2 kiloWatt-Hours

Now you do it!

Problem:

A student is in the habit of leaving her laptop on all the time even after going to bed.

If the laptop uses 100 watts, and is left on 24-hours a day, and 365 days a year, how much electrical energy is used in a year, in kWh?

Problem:

A student is in the habit of leaving her laptop on all the time even after going to bed. If the laptop uses 100 Watts, and is left on 24hours a day, and 365 days a year, how much electrical energy is used in a year, in kWh?

Home Electrical Energy Bill

January	830 kWh
February	820 kWh
March	840 kWh
April	770 kWh
May	750 kWh
June	1160 kWh
July	1330 kWh
August	1110 kWh
September	1040 kWh
October	740 kWh
November	650 kWh
December	1100 kWh

Home Electrical Energy Bill

January	830 kWh
February	820 kWh
March	840 kWh
April	770 kWh
May	750 kWh
June	1160 kWh
July	1330 kWh
August	1110 kWh
September	1040 kWh
October	740 kWh
November	650 kWh
December	1100 kWh

Electricity produced by burning fossil fuels generates 0.7 kilograms of CO2 per kWh.

Electricity produced by burning fossil fuels generates 0.7 kilograms of CO2 per kWh.

Electricity produced by nuclear power generates 0 kilograms of CO2

Electricity produced by burning fossil fuels generates 0.7 kilograms of CO2 per kWh.

Electricity produced by nuclear power generates 0 kilograms of CO2

Electricity generated by wind, solar or hydro generates 0 kilograms of CO2

If: 1 kWh = 0.7 kilograms of CO2and: E = 11,140 kWh

Problem: How much CO2 did this home produce in one year?

If: 1 kWh = 0.7 kilograms of CO2and: E = 11,140 kWh

Problem: How much CO2 did this home produce in one year?

M = 11,140 kWh x 0.7 kg = 7,798 kilograms of CO2 = 7.8 tons of CO2 Math Connections to Earth and Space Science

...And now for something

completely different !

Exoplanets

Habitable Zones

Ice 0 °Centigrade +273 °Kelvin

Steam +100 °Centigrade +373 °Kelvin

Habitable Zones

Pluto - Ice 0 °Centigrade +273 °Kelvin

Mercury - Steam +100 °Centigrade +373 °Kelvin

Habitable Zones:

A region of space surrounding a star where temperatures are suitable for water to remain in liquid form.

Habitable Zones:

Math Connections to Earth and Space Science

A region of space surrounding a star where temperatures are suitable for water to remain in liquid form.

All living things require liquid water, hence this region is called a 'Habitable Zone'

Question:

What does the temperature of a planet depends on?

Question:

What does the temperature of a planet depends on?

 $\sqrt{100}$ Distance from star $\sqrt{100}$ Brightness of star $\sqrt{100}$ Reflectivity of planet $\sqrt{100}$ Atmosphere of planet

Astronomers work with simple units:

Distance: Sun to Earth = 150 million km

- = 1 Astronomical Unit
- = 1 AU

Astronomers work with simple units:

Distance: Sun to Earth = 150 million km = 1 Astronomical Unit = 1 AU

Luminosity of Sun = 4×10^{27} Watts = 1 Solar Luminosity = 1 Lsun

The temperature of a bare planet can be modeled by

$$(1-A)^{1/4} L^{1/4}$$

T = 273 -----
D^{1/2}

A = Albedo L = Luminosity of star D = Distance to star

The temperature of a bare planet can be modeled by

T = 273
$$\sqrt[4]{(1-A) L}$$

A = Albedo L = Luminosity of star D = Distance to star

Example: Planet with albedo = 0.8 orbits at 1.5 AU around a star with L = 5.0 Lsun

$$T = 273 \sqrt[4]{(1-0.8) 5.0} \\ ------ \\ 1.5^{2}$$

 $T = 273 (0.44)^{1/4}$ T = 223 K (-58 F or -50 C)

Problem – What is the temperature for an earth-like planet for which D = 1.0 AU, L = 1.0 Lsun and A = 0.3 ?

T = 273
$$\sqrt[4]{(1-A) L}_{D^2}$$

A = Albedo L = Luminosity of star D = Distance to star Problem – What is the temperature for an earth-like planet for which D = 1.0 AU, L = 1.0 Lsun and A = 0.3 ?

$$T = 273 \sqrt[4]{(1-0.3) 1} \\ ------ \\ 1^{2}$$

T = 250 Kelvin (-23 C or -9 F)

Problem – How big is a Habitable Zone?

T = 273
$$\sqrt[4]{(1-A) L}$$

By assuming a value for A, we can create the following table using MS Excel....

L	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2
0.1	361	255	209	181	162	147	136	128	120	114	109	104	100	97	93	90
0.5	540	382	312	270	242	220	204	191	180	171	163	156	150	144	139	135
1	642	454	371	321	287	262	243	227	214	203	194	185	178	172	166	161
1.5	711	503	410	355	318	290	269	251	237	225	214	205	197	190	184	178
2	764	540	441	382	342	312	289	270	255	242	230	220	212	204	197	191
2.5	808	571	466	404	361	330	305	286	269	255	243	233	224	216	209	202
3	845	598	488	423	378	345	319	299	282	267	255	244	234	226	218	211
3.5	878	621	507	439	393	359	332	311	293	278	265	254	244	235	227	220
4	908	642	524	454	406	371	343	321	303	287	274	262	252	243	235	227
4.5	935	661	540	468	418	382	354	331	312	296	282	270	259	250	242	234
5	960	679	554	480	429	392	363	340	320	304	290	277	266	257	248	240
5.5	983	695	568	492	440	402	372	348	328	311	297	284	273	263	254	246
6	1005	711	580	503	450	410	380	355	335	318	303	290	279	269	260	251
6.5	1025	725	592	513	459	419	388	363	342	324	309	296	284	274	265	256
7	1045	739	603	522	467	426	395	369	348	330	315	302	290	279	270	261

Distance from Star in AUs

Grid of planet temperatures

NASA

Math Connections to Earth and Space Science

U

Μ

Ν

0

S

Т

Y

Problem: Where is 273 < T < 373 ? Distance from Star in AUs

L	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2
0.1	361	255	209	181	162	147	136	128	120	114	109	104	100	97	93	90
0.5	540	382	312	270	242	220	204	191	180	171	163	156	150	144	139	135
1	642	454	371	321	287	262	243	227	214	203	194	185	178	172	166	161
1.5	711	503	410	355	318	290	269	251	237	225	214	205	197	190	184	178
2	764	540	441	382	342	312	289	270	255	242	230	220	212	204	197	191
2.5	808	571	466	404	361	330	305	286	269	255	243	233	224	216	209	202
3	845	598	488	423	378	345	319	299	282	267	255	244	234	226	218	211
3.5	878	621	507	439	393	359	332	311	293	278	265	254	244	235	227	220
4	908	642	524	454	406	371	343	321	303	287	274	262	252	243	235	227
4.5	935	661	540	468	418	382	354	331	312	296	282	270	259	250	242	234
5	960	679	554	480	429	392	363	340	320	304	290	277	266	257	248	240
5.5	983	695	568	492	440	402	372	348	328	311	297	284	273	263	254	246
6	1005	711	580	503	450	410	380	355	335	318	303	290	279	269	260	251
6.5	1025	725	592	513	459	419	388	363	342	324	309	296	284	274	265	256
7	1045	739	603	522	467	426	395	369	348	330	315	302	290	279	270	261

L

Answer: See shaded region for approximate limits Distance from Star in AUs

L	Area	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2
0.1	0.12	361	255	209	181	162	147	136	128	120	114	109	104	100	97	93	90
0.5	0.48	540	382	312	270	242	220	204	191	180	171	163	156	150	144	139	135
1	1.08	642	454	371	321	287	262	243	227	214	203	194	185	178	172	166	161
1.5	1.32	711	503	410	355	318	290	269	251	237	225	214	205	197	190	184	178
2	1.92	764	540	441	382	342	312	289	270	255	242	230	220	212	204	197	191
2.5	2.24	808	571	466	404	361	330	305	286	269	255	243	233	224	216	209	202
3	3.00	845	598	488	423	378	345	319	299	282	267	255	244	234	226	218	211
3.5	3.40	878	621	507	439	393	359	332	311	293	278	265	254	244	235	227	220
4	3.40	908	642	524	454	406	371	343	321	303	287	274	262	252	243	235	227
4.5	2.88	935	661	540	468	418	382	354	331	312	296	282	270	259	250	242	234
5	3.80	960	679	554	480	429	392	363	340	320	304	290	277	266	257	248	240
5.5	4.80	983	695	568	492	440	402	372	348	328	311	297	284	273	263	254	246
6	5.28	1005	711	580	503	450	410	380	355	335	318	303	290	279	269	260	251
6.5	5.28	1025	725	592	513	459	419	388	363	342	324	309	296	284	274	265	256
7	6.44	1045	739	603	522	467	426	395	369	348	330	315	302	290	279	270	261

Distance from Star in AUs

L	Area	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2
0.1	0.12	361	255	209	181	162	147	136	128	120	114	109	104	100	97	93	90
0.5	0.48	540	382	312	270	242	220	204	191	180	171	163	156	150	144	139	135
1	1.08	642	454	371	321	287	262	243	227	214	203	194	185	178	172	166	161
1.5	1.32	711	503	410	355	318	290	269	251	237	225	214	205	197	190	184	178
2	1.92	764	540	441	382	342	312	289	270	255	242	230	220	212	204	197	191
2.5	2.24	808	571	466	404	361	330	305	286	269	255	243	233	224	216	209	202
3	3.00	845	598	488	423	378	345	319	299	282	267	255	244	234	226	218	211
3.5	3.40	878	621	507	439	393	359	332	311	293	278	265	254	244	235	227	220
4	3.40	908	642	524	454	406	371	343	321	303	287	274	262	252	243	235	227
4.5	2.88	935	661	540	468	418	382	354	331	312	296	282	270	259	250	242	234
5	3.80	960	679	554	480	429	392	363	340	320	304	290	277	266	257	248	240
5.5	4.80	983	695	568	492	440	402	372	348	328	311	297	284	273	263	254	246
6	5.28	1005	711	580	503	450	410	380	355	335	318	303	290	279	269	260	251
6.5	5.28	1025	725	592	513	459	419	388	363	342	324	309	296	284	274	265	256
7	6.44	1045	739	603	522	467	426	395	369	348	330	315	302	290	279	270	261

Problem: Red numbers give area of HZ. What pattern do you notice? Math Connections to Earth and Space Science

Answer: Stars more luminous that our sun (L=1) have much larger HZs

Distance from Star in AUs

L	Area	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2
0.1	0.12	361	255	209	181	162	147	136	128	120	114	109	104	100	97	93	90
0.5	0.48	540	382	312	270	242	220	204	191	180	171	163	156	150	144	139	135
1	1.08	642	454	371	321	287	262	243	227	214	203	194	185	178	172	166	161
1.5	1.32	711	503	410	355	318	290	269	251	237	225	214	205	197	190	184	178
2	1.92	764	540	441	382	342	312	289	270	255	242	230	220	212	204	197	191
2.5	2.24	808	571	466	404	361	330	305	286	269	255	243	233	224	216	209	202
3	3.00	845	598	488	423	378	345	319	299	282	267	255	244	234	226	218	211
3.5	3.40	878	621	507	439	393	359	332	311	293	278	265	254	244	235	227	220
4	3.40	908	642	524	454	406	371	343	321	303	287	274	262	252	243	235	227
4.5	2.88	935	661	540	468	418	382	354	331	312	296	282	270	259	250	242	234
5	3.80	960	679	554	480	429	392	363	340	320	304	290	277	266	257	248	240
5.5	4.80	983	695	568	492	440	402	372	348	328	311	297	284	273	263	254	246
6	5.28	1005	711	580	503	450	410	380	355	335	318	303	290	279	269	260	251
6.5	5.28	1025	725	592	513	459	419	388	363	342	324	309	296	284	274	265	256
7	6.44	1045	739	603	522	467	426	395	369	348	330	315	302	290	279	270	261

430 planets known...and the search continues!

NA SA